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Abstract

Short- and long-time solutions for material balance equations for porous electrodes in both the solid and the solution phase is presented.
These solutions represent the concentration profile of lithium-ions in the solid and solution phases of the positive electrode of a lithium-ion
cell, and are obtained using the method of Laplace transform for short- and long-time intervals.
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1. Introduction

This paper presents an analytical solution for the material
balance equation that governs the concentration distribu-
tions in the positive electrode (cathode) of a lithium-ion cell
operating under galvanostatic conditions. It is an extension
to the work reported by Atlung et al. [1] who have derived
analytically a short-time solution for the lithium-ion con-
centration. These workers [2] have also obtained a short-
time analytical expression for the discharge curve in a
system using composite insertion electrodes.

Recently, Subramaniam and White [3] presented an exten-
sion to the method of separation of variables for solving the
equations that control the concentration distributions in solid
electrodes. In this work, we have solved the material balance
equation by the method of Laplace transform. The material
balance equation takes into account the migration term, but
for a constant lithium-ion transference number. The solutions
obtained are for short- and long-time intervals.

2. Description of system

The lithium-ion cell that is being considered in this work
has the configuration LiMn,QOylseparatorigraphite with a
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liquid electrolyte. A schematic representation of a clo-
sely-packed cathode employing LiMn,O, active material
is shown in Fig. 1. The particles of active material are
considered to be spherical and have high porosity. The
electrodes are composites that implies that the active mate-
rials are also mixed with carbon black to increase the
electronic conductivity. This model uses the porous elec-
trode theory [4] and the concentrated solution theory [5] to
treat the composite electrodes. During the discharge process,
lithium-ions deintercalate from the negative electrode
(anode), diffuse through the separator, and intercalate into
the cathode.

3. Solution phase of cathode

In order to compare our results with others, we have
written the equation in accordance with that of Fuller et al.
[6], where the governing equation for the electrolyte con-
centration is given as:

ajn(l — t-‘r)
— (M

0 O(x,1) =¢'’D & e
5 X, =& ﬁ (x, t ) +
where @(x, ) is the material balance of salt in the solution
phase. Here, D is the diffusion coefficient of the lithium-ion
in the electrolyte, ¢ the volume fraction of the solid, ¢, the
transference number, a the specific interfacial area, and j, is

the pore wall flux of lithium-ion. Similar to Doyle and
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Fig. 1. Schematic representation of lithium-ion battery used in this model.

Newman [7], the following dimensionless parameters are
introduced:

e X c Dt
C = — =—, r=—, T =—
g d, 52

=7

Ao’ P

Eq. (1) when written in its dimensionless parameters
becomes:

aC 1/2 82C

—=¢l"—=+J 2
5= ¢ 72 + 2
subject to the boundary and initial conditions

0

Fo0 aty=1+r 3)
dy

oc Jr

and

c(y,0) =1 (5)

The term aj, in Eq. (1) represents the rate of transfer of
lithium-ions from the electrolyte solution inside the pores to
the solid, and is related to the divergence of the current flow
in the electrolyte through Faraday’s Law [8], where an
average of j, [7] is taken to be:

- _—I(1—15)Ls
~ aFL. ~ FDcoer

Jn (6)

On application of the Laplace transformation with respect to
dimensionless time 7, we get:

o0 o0 2 o0
/ efs‘L' % dT — 81/2/ efs‘f 872 dT + J/ e*S‘E dT (7)
0 ot 0 8)’ 0

Integrating both sides of Eq. (7) and interchanging the orders
of differentiation and integration of the first term on the
right-hand side, we obtain:

d’c s 1 J
e =——|14+Z 8
d? D gl/2 ( * s) ®

ol

which gives the solution of:

J
¢(y,s) = Acosh(qy) + Bsinh(gy) + (1 + s> 9)
where g = /s/ ¢!/2 and the boundary conditions are:
e
dy
dc Jr
& an 4=l (11

Applying the boundary conditions (10) and (11) gives:
Jr coshg(l+r)

A=— 12
e!/2sq  sinh(gr) (12)
and
Jr sinhg(1 +7)
b= ¢'/2sq  sinh(gr) (13)
Eq. (9) now becomes:
_ L J Jr (coshq(l+r—y)
d%g_s+ﬁ_yﬂ<‘W%mmm) (14

Expanding the trigonometric term in Eq. (14) in its expo-
nential form, Eq. (14) can be rewritten as

1 J  Jr [ea(=y+2r) o e—qy-1)
s 52 gl ( §3/2(1 — e~2ar) )

E(y>s) -

A
l i Jr 1 i[efq(lfy+2r[;1+l])+efq(y71+2m)}
A

n=0

2 AR
15)
Using the Laplace transformation Table [9], we get:
[ coshg(l +r—y)
5s3/2 sinh(gqr)
- ) l—y+2rn+1])
= 47)1/? [zerfc<(
;0( ) 2V el/2r
. (y—1+ 2rn)>}
+ ierfc (— (16)
2Vt
where:
1
ierfc(x) = — e — xerfc(x). (17)

/2
Hence, the final solution of Eq. (15) is given by:

2t P& 1—y+2rn+1]
c()’,T):l—I—JT—W O(ZCI'fC(W)

4 ierfe <(y — 1+ 2””)) (18)

2el/411/2

It can be observed that Eq. (18) is valid only for a short time.
In fact, for large values of s, Eq. (15) will give the con-
centration profile as:

cy,t)=1+Jt (19)
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and the concentration increases linearly with time for a
particular value of y.

In order to obtain the long-time solution, the trigono-
metric term of Eq. (14) is expanded as follows:

472 47 472
coshz=(1+ )(1+32 2)(14-@ (20)
2 2 2

. Z Z Z

Defining:
f(s) coshq(l+r—y)

g(s)  s3/2sinh(qr)
coshg(l +r—1y)

- s2(1+ (g*r2 /7)) (1 + (g*r?/2%72)) ...

where f(s) and g(s) are polynomials in s which have no
common factor and the degree of f(s) is lower than the degree
of g(s).

Clearly, s = 0 is a root for Eq. (22) and the other root is
given by ¢ = (nmi)/r or equivalently s= (n’n’e!/?)/r?
wheren=1,2,3, ...

By partial fraction, Eq. (22) becomes:

(22)

coshg(l +r— A -
o = B S
s3/2 sinh(gr) (1+ (¢*r /n n2))’

n=1,2,3,... (23)

m= 1

This implies that:

cosg(l+r—y)

00 2.2
qr
A]SH(] +7’127'52>

n=1

00 00 2.2
+A2H(1 C]>+SzzBm H < Zziz)

m=1 n=1,n#m
(24)
Taking the limit as s — 0, we get A, = 1.

Eq. (24) can now be rewritten as:

coshg(l+r—y)

sinh(gr)
ISV

00 00 2.2
1/2: 2 qr
+A;s/“sinh(gr)—+s E B, || <1+—n2n2>

m=1 n=1,n#m

(25)

Differentiating Eq. (25) with respect to s, taking the limit as s
tends to zero, and applying L’Hopital’s rule, we get:

1 (1—|—r—y)2 2r2
A= 1+r < gl/4 gl (26)

Letting ¢ = (kni)/r and substituting it into Eq. (25) gives:

1/272, 2\ 2 00 2
cosh<(1+r y)km> (—8 l;n) B, H l1_<5) ]
r n=1,n#k n

or

eknt (=)
B
Eq. (27) implies that the values for B,, are:
(—1)*"2rcos(kn/r)(1 +r — y)
ektmt
Hence, the partial fraction in Eq. (23) becomes:
coshg(l+r—y)
5s3/2 sinh(gqr)

11|24 ((4r—y)? A
2 s |1+r 2612 g

n+1

= 2r*cos(nn/r)(1 +r—y)
+ 2 8n47r4 + (¢?r? /n2n?)) 29)

Eq. (29) is then inserted into Eq. (14). Upon taking the
inverse of the Laplace transform of the substituted Eq. (14),
we get:

c(y,7)
B r 2Jr [ (1 —|—r—y)2 r?
1*’%1‘gﬂ)‘1+r< 27 o

71283/4 Z

cosk—n(lJrrfy): (27)
r

exp(—A2&'/21) cos(A2 (14-r—y))

(30)

where A, = (mn)/r. This equation is valid for a long-time
interval and is related to the discharge/charge coefficient.

4. Solid phase of electrode

In the solid phase, the porous electrode solid particles are
considered to be spherical with a radius R. The concentration
of lithium-ions inside a solid sphere of active material, c,, for
a definite radius r and time ¢ is given by:
Jcg e, 20c,

S op |y 31
ot L")rz T 6r] D
As in [10], Eq. (31) is subjected to the following initial and
boundary conditions:

¢s(r,0) = ¢ (32)
de,(0,1)

5 =" 63

_p,2eRD _ (34)
or

where ¢ is the initial concentration of lithium-ion in the
solid particle, j, the average pore wall flux of lithium at the
surface of the particle [11], and D, the diffusion coefficient
of the lithium-ion inside the particle. The negative sign
indicates that the pore wall flux across the solidlliquid
interface is in the opposite direction to the lithium-ion
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diffusion into the surface of the insertion material. The
radius of the particle is traversed by the lithium-ion when
r = R. Atlung et al. [1] and Subramaniam and White [3]
have set a zero initial condition in their work.

Let y = r-c, then the Laplace transform of the linearized
Eq. (31) is given by:
d’y s co
L ty=_22 35
a2 p,° " D, (%3)
Eq. (35) was integrated with respect to r twice, which is why
Eq. (35) becomes

€o

y(r,s) =B —e ) +—r (36)
s
or
r¢(r,s) = 2Bsinh(gr) + C—Or (37)
s

where ¢ = \/s/D;.

Here, B is one of the two constants of integration obtained
upon performing the integration twice on Eq. (35). It can be
easily shown that the other constant of integration is —B.

On differentiating Eq. (36) and applying the boundary
condition (34), we have:

2B = Bkt (38)
~ sDed[(1 — gr) — (1 4 gR) e24R]
Hence, Eq. (37) now becomes:
- D2
E(V S) _ @ JnR (e—q(R—r) _ e—q(R+r))
’ rsDy(1 — gR)
-1
« [1 _ Tri‘”; eZqR} (39)
—q
P2
e(r,s) = “ JnR (e7d(R=") _ gmalR+r)y
’ rsDs(1 — gR)
o8] 1 +qR> n 5
X e 2naR (40)
G _% ]"iz —q(R—r) _ o—q(R+r)
c(r,s) =—+ D, e e )
oo n n (_l)kzn—k e—2nqR
22 () G-
. R2 —q(R—r) _ a—q(R+r)
c(r,s) = co  JnR7T (e ¢ )
rD; S(l - qR)

2 1
+ _ e—q(SR—r) _e—q(3R+r)
(s(l —qR)* s(1 —qR)>( :

N 4 a0
s(1—gR)® s(1—gR)* s(1—gR)

« (e—q(SR—r> — e~ 9(5R+r) )+ ] (42)

From Eq. (42), it can be observed that the Laplace transform
can only be inverted for small time intervals. Upon inversion
[9] forn =1 and k = 1, we get:

es(ps7)
=co —|—§{; {—exp(—l +p +r)erfc( VTt 12—1\;_p>
+erfc<12\/LD> +exp(—1—p+1) erfc( VTt 12J\;_p>
)
where the two dimensionless variables are defined as:
p= % and 7= %

Eq. (43) gives a relationship between the lithium-ion con-
centrations in the solid phase with discharge current only for
short-time intervals.

On taking the Laplace transform to Eq. (31), we have
arrived at Eq. (37). Upon applying the boundary condition
(34), we obtained Eq. (38), which we now rewrite as

jnR? 1
2B =" — (44)
sDy sinh(gR) — gR cosh(gR)
Hence, Eq. (37) becomes:
.nRz inh
5(r,5) = L4 R0 sinh(ar) (45)
s rDy s[sinh(gR) — gR cosh(gR)]

We must now consider the inverse transform of the second
term on the right-hand side of Eq. (45). Making use of
Maclaurin series, we have:

sinh(gR) — ¢R cosh(gR) _2R2 f: DR 5
aR) —q q 2t 3 Dy
(46)
Hence, the partial fraction of this second term is given by:
sinh(gr)
s[sinh(gR) — gR cosh(gR)]

gl (@3 + ()5 + -+ ]
= (C2R3/D,)qs S ((n+ DR/ (20 + 3)1Ds")

sinh(gr) Ay Ay F(s)

S L B 48
s[sinh(gR) — gRcosh(gR)]  s? + s + G(s) (“48)
where:

inh
SINNGr) _ 40 Gls) + AvsGls) + 5 F(s) (49)
and
Gls) = 2R3N (n+ 1)R*™ , sinh(gR) — R cosh(gR)
VD L3 T 5q

(50)
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If 4, are the roots of G(s) = 0, then 4, = —D;o?/R*, where
o, are the non-zero roots of tan # = 0. From Egs. (49) and
(50), we have:

3D,
Ao =—p3 (5D
3r (R? 2
A ﬁ(ﬁ‘z) (52)
and
F(s) = sin((o,/r)/R) 1
=2
G(s) ; oZsino, s — Ay (53)

where 4, values are simple zeros of an nth order polynomial
G(s).

Hence, the Laplace transform of Eq. (45) can be written
as:

R 3Dy 1/r\2 3 R
es(ry1) = co =75 { R? +2(R> 10205
X ZM exp(—ociDst/Rz)} (54)

where the o, values are the positive roots of a, cot o, = 1.
Eq. (54) is valid for all £. As # tends to infinity, the summation
tends to zero and Eq. (54) is simplified to:

_ juR* 3Dy l(r 2 3
&) = =7 { = +5 (%)~ 75 (55)

5. Results and discussion

The profiles of the concentration of lithium-ions during a
galvanostatic discharge in the solution phase of the cathode

1.05
1044

1.03

¢, dimensionless concentration

1.02 - N e

1.01

] T T T 1
1 2 3 4 5
y, dimensionless distance

Fig. 2. Concentration profile for short-time interval in solution phase
across the cathode during galvanostatic discharge of /= 1.0 and
1.39 mA cm ™.
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Fig. 3. Concentration profile, for long-time interval in solution phase
across cathode during galvanostatic discharge of 1.39 mA cm ™2,

are plotted in Figs. 2—4. Fig. 2 is plotted using Eq. (18), and
Figs. 3 and 4 using Eq. (30). The solid volume fraction ¢ is
taken to be 0.524 [7] with a total thickness of cathode of
x=0.174 x 10~* cm [7], and the initial concentration is
co = 3.9 mol cm 2. From Fig. 2, the concentration of
lithium-ions in the solution phase is lowest at the back of
the cathode. This is reasonable because during full charge, it
is expected that the lithium-ions concentration in the cathode
will be almost zero, and during discharge the lithium-ions
fill up the back portion of the cathode last. The concentration
of lithium-ions at every point in the cathode increases with
the increase in discharge current for a particular time.

¢, dimensionless concentration

0 T T T 1
1 2 3 4 5
y, dimensionless distance

Fig. 4. Concentration profile for solution phase across cathode during
discharge of 7 = 0.5, 1.0 and 1.39 mA cm 2,
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Fig. 5. Concentration profile in solid phase across cathode during
galvanostatic discharge for short-time interval.

The filing up of the cathode for a constant discharge
current at various times is shown in Fig. 3. For ¢ = 3000 s,
the cell is not fully charge since the discharge current
(I =139mA cmfz) sends the lithium-ions until y = 3.12
into the bulk of the cathode. As time increases, more and
more lithium-ions enter the cathode and reach the back of
the cathode. As time increases further to 5400 and 7200 s,
the concentration of lithium-ions increases.

Plots of the discharge curves in the solution phase for
various discharge currents at fixed time are given in Fig. 4.
Again, the concentration is minimum at the back of the
cathode, that is at y = 1 4 r. The profile agrees with the
results obtained by Doyle and Newman [7], but the inter-
section point of the graph occurs near y = 3 compared with
that of Doyle and Newman, where the intersection point
occurs at y = 2. This is the effect of taking the boundary
condition at the separatorlcathode interface as Jr/em, where
J is the dimensionless migration term. Doyle and Newman
have assumed a steady-state situation when plotting this
graph.

Figs. 5 and 6 are obtained by plotting Eqgs. (43) and (54).
Fig. 5 gives the plot of concentration versus distance for a
short-time interval in the solid phase of the cathode at a
constant discharge current of 1.39 mA cm 2. This plot
shows a hyperbolical increase in concentration as the
lithium-ions move from the center to the surface of the
electrode particle. The concentration profiles inside solid
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Fig. 6. Concentration profile in solid phase across cathode during
galvanostatic discharge for long-time interval.

particles for a large time interval at a constant discharge
current of 1.39 mA cm ™2 are given in Fig. 6. Similar to Fig. 5,
the plot suggests that, during discharge, lithium-ions inside a
solid particle move away from the center of the spherical
particle. This is due to the fact that lithium-ions are moving
towards the surface of the particle in order to be dispersed into
the electrolyte in the cathode region. The concentration of
lithium-ions increases in a consistent rate and becomes more
rapid as time increases. For a very small time interval, the rise
in lithium-ion concentration is rather slow, as shown in Fig. 5
as compared with the increase during a longer time interval.
This is due to the fact that a very small amount of lithium-ions
have been dispersed in this short period.

Even though there has been a lot of work on mathematical
modeling of lithium-ion batteries, most of the work has been
done numerically [5,6,8,11-15]. Very few analytical studies
are available in the literature. Only recently was the material
balance equation for the solution phase solved by involving
the migration term analytically, but this was achieved by the
method of separation of variables [3,7] and not by Laplace
transform as in the present work. Also, the solid phase has
been solved by Laplace transform for the initial condition
where the lithium-ion concentration in the sphere is zero.
The present work considers a constant lithium-ion concen-
tration in the solid particle.

The following table differentiates the work done by other
authors with that performed in the present work.

Atlung, West and Jacobsen [1]

o (Pe 200
ot Ox2  xOx

Solved analytically the following equation for the solid phase:

>, O0<x<r

The initial and boundary conditions were:



Doyle and Newman [7]

Doyle and Newman [7]

Subramaniam and White [3]

Subramaniam and White [3]

Present authors
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(i) fort =0, c=0,
0

(i) x — 0, 4m> 2 — 0,

5 ox
Lo 0e o
>iii) x = r, g D
Method of solving: Laplace transform solution obtained for short-time only.
Solved analytically the following equation for solution phase:
90, _ £l/2 @ +J
ot T 0y?
The initial and boundary conditions were:
(i) 6, =0att=0,

00

(ii)a—Z:Oaty:IJrr,

Y
00200,
dy
(IV) 02 = 01 aty = 1,
Method of solving: separation of variables Solution obtained for long-time only.
Solved the following equation for solid phase:
dey D e, n 2 dc,

o lorr  ror
Subjected to initial and boundary conditions:
@G) ¢s = c? att =0,

Jdcg

(iii) y=1,

(i) :30 at r =0,
(iii) —D, &2 — at r = R,.
or aFL.

Method of solving: separation of variables Solution obtained for short- and long-
time intervals.

Solved analytically the equation in the solution phase given by:

00, 1,00,
R Oy?
The initial and boundary conditions were:
i) 0, =1att=0,

+J

(ii)%—eyz:Oatyzl—l-r,
(iii) 83/2%0; = %—ey' aty=1,
@iv) 0, =0, at y = 1.

Method of solving: separation of variables solution obtained for short- and long-
time intervals.

Solved diffusion in spherical electrode particle given by equation:

be_ (e, 200
or or:  ror

Subjected to initial and boundary conditions:
(i) ¢(r,0) =0,

... Oc B
(ii) a (0,¢) =0,

... Oc

(iii) o (1,1) =6.

Method of solving: separation of variables solution obtained for short- and long-
time intervals.

Solved analytically concentration of lithium-ions in solution phase of a cathode
given by equation:
ge _ p0c

o 8—y2+J
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Subjected to the boundary and initial conditions:

oc_

@) at By

Jr

(ii)g—;:—aty:

81/2
(iii) ¢(y,0) = 1

Oaty=1+r,

Method of solving: Laplace transform Solution obtained for short- and long-time

intervals.
Present authors

by

e (7

ot T\ or?

Solved equation for concentration of lithium-ions in solid phase of cathode is given

)

Subjected to the initial and boundary conditions:

(i) ¢s(r,0) = co,

(i) %(O, ) =0,
or

ey

(iii) —Dy o

(R7 t) =J

Method of solving: Laplace transform solution obtained for short- and long-time

intervals.

6. Conclusions

This paper presents the analytical solution for the concen-
tration profile of lithium-ions in the solid and the solution
phases of the positive electrode of a lithium-ion cell. The
method of Laplace transform has been used extensively in
solving the material balance equation in both phases of the
cathode for both short- and long-time intervals, and thus,
extends the work of Atlung et al. [1]. In solving for the
concentration profile in the spherical particle, the initial con-
dition is taken to be ¢ instead of a zero initial condition as used
by both Carslaw and Jaeger [16] and Atlung et al. [1]. Again,
we have extended the work of Atlung et al. [1,2] by deriving the
analytical solution for both short- and long-time intervals. The
explicit solutions for short- and long-time intervals of both
phases are presented together with their graphs.
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